实现一致性哈希(Consistent Hashing)java版本
一致性哈希算法是分布式系统中重要的路由算法,如果你对它的原理不熟悉,可以看看我之前写过的这篇文章。
这篇文章主要说说它的实现。首先,是几个关键的抽象:
- Entry,要放入cache服务器中的对象。
- Server,真正存放缓存对象的cache服务器。
- Cluster,服务器集群,维护一组Servers,相当于这一组servers的代理,接受
put
,get
请求,通过一定算法(普通取余或一致性哈希)把请求转发到特定的server。
首先来看看不使用一致性哈希算法的情况,会出现什么问题:
原始版本
Entry:
public class Entry {
private String key;
Entry(String key) {
this.key = key;
}
@Override
public String toString() {
return key;
}
}
Server:
public class Server {
private String name;
private Map<Entry, Entry> entries;
Server(String name) {
this.name = name;
entries = new HashMap<Entry, Entry>();
}
public void put(Entry e) {
entries.put(e, e);
}
public Entry get(Entry e) {
return entries.get(e);
}
}
Cluster:
public class Cluster {
private static final int SERVER_SIZE_MAX = 1024;
private Server[] servers = new Server[SERVER_SIZE_MAX];
private int size = 0;
public void put(Entry e) {
int index = e.hashCode() % size;
servers[index].put(e);
}
public Entry get(Entry e) {
int index = e.hashCode() % size;
return servers[index].get(e);
}
public boolean addServer(Server s) {
if (size >= SERVER_SIZE_MAX)
return false;
servers[size++] = s;
return true;
}
}
Entry
,Server
,Cluster
是对这三个抽象的实现,看代码应该是非常清晰的。
其中,Cluster
类是实现路由算法的类,也就是根据entry的key决定entry放入哪个server中,在最简单的实现里,直接用取余的方法:e.hashCode() % size
。
然后看看测试:
public class Main {
public static void main(String[] args) {
Cluster c = createCluster();
Entry[] entries = {
new Entry("i"),
new Entry("have"),
new Entry("a"),
new Entry("pen"),
new Entry("an"),
new Entry("apple"),
new Entry("applepen"),
new Entry("pineapple"),
new Entry("pineapplepen"),
new Entry("PPAP")
};
for (Entry e : entries)
c.put(e);
c.addServer(new Server("192.168.0.6"));
findEntries(c, entries);
}
private static Cluster createCluster() {
Cluster c = new Cluster();
c.addServer(new Server("192.168.0.0"));
c.addServer(new Server("192.168.0.1"));
c.addServer(new Server("192.168.0.2"));
c.addServer(new Server("192.168.0.3"));
c.addServer(new Server("192.168.0.4"));
c.addServer(new Server("192.168.0.5"));
return c;
}
private static void findEntries(Cluster c, Entry[] entries) {
for (Entry e : entries) {
if (e == c.get(e)) {
System.out.println("重新找到了entry:" + e);
} else {
System.out.println("entry已失效:" + e);
}
}
}
}
测试里,先构建一个6个服务器的集群,然后把一组entries逐个放入集群,然后向集群里添加一个新的server,看有多少个entry失效了,结果:
重新找到了entry: i
entry已失效: have
entry已失效: a
entry已失效: pen
entry已失效: an
entry已失效: apple
entry已失效: applepen
entry已失效: pineapple
entry已失效: pineapplepen
重新找到了entry: PPAP
可见,在普通取余路由算法的实现,几乎所有的entry都会被映射到新的server中,大部分缓存都失效了。
实现consistent-hashing
首先,为了servers和entries在hash环上足够分散,重写它们的hashCode方法,简单起见,复用String的hashCode算法:
public int hashCode() {
return name.hashCode();
}
然后,就可以选择几个命名的服务器名字,确保它们不会集中在环上的某一段上。
然后,在Cluster中,用SortMap存储servers:
public class Cluster {
private static final int SERVER_SIZE_MAX = 1024;
private SortedMap<Integer, Server> servers = new TreeMap<Integer, Server>();
private int size = 0;
public boolean addServer(Server s) {
if (size >= SERVER_SIZE_MAX)
return false;
servers.put(s.hashCode(), s);
size++;
return true;
}
}
重写Cluster的routeServer方法:
public Server routeServer(int hash) {
if (servers.isEmpty())
return null;
if (!servers.containsKey(hash)) {
SortedMap<Integer, Server> tailMap = servers.tailMap(hash);
hash = tailMap.isEmpty() ? servers.firstKey() : tailMap.firstKey();
}
return servers.get(hash);
}
这里传入的参数hash是entry的hashcode,根据entry的hashCode,向上找一个和它最接近的servers并返回。
再测试一下这个一致性hash的表现:
public class Main {
public static void main(String[] args) {
Cluster c = createCluster();
Entry[] entries = {
new Entry("i"),
new Entry("have"),
new Entry("a"),
new Entry("pen"),
new Entry("an"),
new Entry("apple"),
new Entry("applepen"),
new Entry("pineapple"),
new Entry("pineapplepen"),
new Entry("PPAP")
};
for (Entry e : entries)
c.put(e);
c.addServer(new Server("1"));
findEntries(c, entries);
}
private static Cluster createCluster() {
Cluster c = new Cluster();
c.addServer(new Server("international"));
c.addServer(new Server("china"));
c.addServer(new Server("japan"));
c.addServer(new Server("Amarica"));
c.addServer(new Server("samsung"));
return c;
}
private static void findEntries(Cluster c, Entry[] entries) {
// omitted...
}
}
结果:
重新找到了entry: i
重新找到了entry: have
重新找到了entry: a
重新找到了entry: pen
重新找到了entry: an
重新找到了entry: apple
entry已失效: applepen
重新找到了entry: pineapple
重新找到了entry: pineapplepen
重新找到了entry: PPAP
大部分的缓存都没有失效!至此我们验证了当节点数量改变时,一致性hash能够使失效的缓存数量尽可能少。
github: https://github.com/afghl/hashringdemo
参考
- https://community.oracle.com/blogs/tomwhite/2007/11/27/consistent-hashing